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PHOTOELASTIC ANALYSIS OF SHRINKAGE STRESSES AND ITS
APPLICATION TO THE MICROMECHANICS OF COMPOSITES

INTRODUCTION

A number of early photoelastic studies of shrinkage stresses were conducted to analyze
solid-propellant rocket motors. A solid-propellant rocket grain is a soft rubberlike com-
bustible material cast in and bonded to a rigid rocket shell or case. The shrinkage after
casting the grain in the shell, or the shrinkage due to thermal change, produces strains and
stresses in the grain. The photoelastic methods developed to study stresses in rocket grains
can be applied to shrinkage problems of all kinds, such as the peeling of a printed circuit
from a printed circuit board due to thermal change, the stresses in rubber tires when the
rubber is cast on plastic or metal plies, or tension cracks in prestressed concrete. Currently
the shrinkage problem which seems to be of greatest interest to photoelasticians is the
microanalysis of stresses due to shrinkage in composite materials such as fiberglass.

With regard to the rocket-motor problem, the obvious load on a rocket grain is the
internal pressure due to burning. Within certain limits the pressure loading and the shrink-
age loading* on propellant grains produce similar stress distributions. Two-dimensional
photoelasticity was used to analyze pressure-loaded models to determine the stress con-
centration factors for both pressure and shrinkage loading [1].

As rocket-grain design progressed beyond these limits of similarity, it became necessary
to model the shrinkage loading directly. Two-dimensional models loaded -by curing shrink-
age [2], direct thermal shrinkage [31, and mechanical displacement [4] were used to ana-
lyze the shrinkage load.

Further progress in rocket-grain design made it necessary to develop three-dimensional
models [5]. Since most two-dimensional experimental analysis was done appropriately
enough with the photoelastic method, three-dimensional photoelasticity seemed the first
choice for three-dimensional studies. The advantages were obvious, but there were serious
difficulties to. overcome. Unless one resorts to the sandwich method or the scattered-light
mlatduu (Uthi mueuuu was uubsequentiy used successfuny [6j in Three-dimensional rocket-
grain studies), it is necessary to lock the stress into the model. Since the loading is a curing
or thermal shrinkage, the locking-in process becomes intimately associated with the loading
process.

The object of this report is to summarize the development of the photoelastic method
for analysis of shrinkage stresses. These methods were first applied in many cases to rocket-
grain problems but have wider application and are currently being used in general in the
studies of composites.

*When material of a body shrinks due to thermal change or curing of the material, and is restrained from
free shrinkage, stresses and strains are set up. The restrained shrinkage is the causative factor of these
stresses and strains. In this report this shrinkage will be referred to as a load, or loading, on the body.

Manuscript submitted June 26, 1975.
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SPECIAL REQUIREMENTS

Zero-Gradient Requirement

An important shrinkage load on a solid-propellant rocket grain is caused by a slowly
changing temperature or a slowly curing propellant materil. At any instant the tempera-
ture (or stage of curing) of the propellant is the same at every point. This is equivalent to
saying there is zero thermal gradient (or zero gradient of curing) in the propellant. If the
shell also shrinks, the effective, load-causing shrinkage is represented by the difference in
shrinkage coefficients of the propellant material and the shell material. This definition
(or restriction) of the problem allows the application of the three-dimensional stress-
freezing method of photoelasticity to be applied. To fully justify the application, a linear-
behavior limitation during cooling is required.

Linear-Behavior Requirement

Locking-in or freezing of a photoelastic pattern is sometimes thought to occur at a
certain critical temperature, the locking-in occurring as the model is cooled below this tem-
perature, If this were the case, the photoelastic model could be heated above the critical
temperature, restrained, and slowly cooled to the critical temperature, at which point some
given amount of shrinkage would have occurred. The restraint of this shrinkage would have
set up a stress and strain field. By slowly cooling past the critical temperature, this stress
and strain eld vA .rnlA We lonlreA i4n

This description is oversimplified, since it is known that when a photoelastic model
is mechanically loaded and the load removed below the critical temperature, the photo-
elastic response tends to decay. Loading, or increasing the load, below the critical tem-
perature produces an increase in photoelastic response. It is found that for epoxy mater-
als there is a range of some 500 F through which the material must pass before the response
is fully locked in or frozen. This range is often called the transition zone between the
rubbery and glassy states of the material. The bounds of this transition zone are called the
upff critical tfnerature and t+lnn lnlwzer -,-

4
I +-1 +-r-ira+f- r'7l "T'ese eonnepnls are

illustrated in Fig. 1.

The simplified description of the locking-in process is adequate to describe the locking-
in of stresses due to mechanical load, since mechanical loading in the transition zone is
typically held constant. The upper critical temperature is called the critical temperature,
and the lower critical temperature is not specified.

For shrinkage load the transition zone is important and in most shrinkage problems
is of vital import+nce The total shrinkage depends to a lage degrae on the maximmtent-

perature. Failure may occur if the shrinkage is excessive. To avoid failure in photoelastic
analysis of bodies subjected to shrinkage, the maximum temperature is often not allowed
to go beyond the upper critical temperature. Thus in many photoelastic analyses of shrink-
age all the significant loading and all the locking-in occur in the transition zone.
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the cast surface. It can occur whether the casting is restrained from shrinkage or free to
shrink and is essentially unrelated to bonding or other forms of restraint.

The rind effect has always been a nuisance to photoelasticians, and typically the cast
surface with the rind effect is cut away after casting, Fifteen years ago according to
Hetenyi [8] "a certain rind effect [was] seemingly unavoidable in cast surfaces." Since
that time a number of investigators have cast rind-free surfaces. Various recommendations
have been made to obtain rind-free surfaces. These include choice of material (primarily
endothermic hardeners), mold manufacture (generally rubber molds are suggested, although
some still recommend metal), and surface protection from the atmosphere. Invariably
however slow heating and cooling are recommended, and it is felt that this is probably the
primary factor in rind-free casting.

The rind effect aptly illustrates the need to restrict the analysis of shrinkage to zero
thermal gradient and to linear behavior. The thermal gradient associated with the rind
effect act`Ls in frol t.h urL f2ace ao iL Fig. 2 Id ha several manifestations vLhlich aLe
also illustrated in Fig. 2. It creates a gradient of strain, gradients of material properties
(specifically Young's modulus (E) and the photoelastic fringe value (ft0 )) and a spacial
variation of the stage of locking-in of the photoelastic response. Obviously these effects
are coupled with each other and with curing in a complicated way, so that it can no longer
be said that the photoelastic fringes are proportional to stress and strain. And in the end
the locked-in photoelastic fringes do not correspond to stress or strain. Even in the rela-
tively simple one-dimensional analysis along a normal to a flat cast surface it is difficult to
apply the usual analysis to predict stress and strain from fringes produced by the rind
effect. Analvyis of rind stress in 2 tvnical body with cnrners, diwontiniitieg, and curved
surfaces would be much more difficult,

An additional difficulty is indicated by the fact that the rind effect cannot be elimi-
nated by annealing the material. This suggests the material itself is permanently altered by
curing of this sort and further indicates that the requirement of linear behavior is violated.

A further point is that similar effects occur in fully cured photoelastic material that
is cooled too quickly from the upper critical temperature. Occasionally frozen photoelastic
patterns with thermal gradients are produced on purpose. Early investigators often simply
quenched a hot model to demonstrate frozen stress fringes. However, no quantitative
analysis of stresses or strain can be recalled.

Because of these difficulties it is felt that where there is a shrinkage gradient in a
body, photoelastic analysis of shrinkage stresses with the frozen-stress method is still not
possible, and that analysis must be restricted to problems of zero thermal gradient and to
model materials with linear viscoelastic response.

Material-Property-Proportionality Requirement

In addition to the zero-gradient and linear-behavior requirements the third, and last,
special requirement to insure a valid photoelastic solution to the shrinkage problem is that
the material properties remain proportional. Specifically it is required that the proportions

4
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Fig. I - Variation of material properties through the
Transition-Zone range of temperature

Although shrinkage continues below the lower critical temperature and produces ad-
ditional photoelastic response, this photoelastic response is not locked in (is elastic) and is
removed with the removal of the restraint. Indeed, if the model is cut up for analysis, it
is necessary to remove the restraints, since the elastic pattern would distort the pattern
in the cut pieces and must be eliminated completely.

Photoelastic materials are known to be viscoelastic in the transition zone, so that the
continually increasing shrinkage load is being reduced somewhat by the relaxation of the
material. To justify the analysis, this relaxation must follow the laws of linear viscoelas-
tic behavior. For three-dimensional photoelastic materials this is found to be the case up
to a certain level of strain, which is similar to and will be called the proportional limit.

To summarize the two requirements, the final response depends on spacial uniformity
of temperature (zero temperature gradients) or curing, and linear viscoelastic behavior of
the material throughout the transition-zone span to insure applicability to the prototype
shrinkage problem. The importance of these two requirements can be appreciated by con-
sideration of the problem of the rind effect.

Rind Effect

The rind effect is a permanent photoelastic response of up to about six fringes per
inch of thickness that often occurs during curing of photoelastie materials. The effect is
observed as fringes parallel to the cast surface when viewing the material in a polariscope
parallel to the cast surface. It is produced in casting by thermal and curing gradients on
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Fig. 2 - Gradients in from the surface of a material which
is subjected to curing and temperature cycles such as to
produce the rind effect

of Young's moduli in the various components be fixed and that Poisson's ratio of each of
the components remain fixed. It is known that as the material-property proportions
change, the stress and strain distributions may change. So any photoelastic results from a
system. with vrying. material properties could give an integral effect of varying sress and
strain fields, with no way to separate the parts. The analysis of such a result is currently
beyond photoelastic methods of anlaysis.

It might seem that this requirement creates an insurmountable barrier to any three-
dimensional photoelastic analysis of shrinkage, since the photoelastic response is produced
by shrinkage, and is locked-in, as the material passes through the transition zone, which
also produces a great variation in Young's modulus.

One important class of problems avoids the difficulty because one material is rigid
with respect to the other. So, although Young's modulus of the soft photoelastic mate-
rial may change with temperature,its ratio with respect to the "rigid" material is zero, or
near enough to zero. This allows appreciable variation of the soft-material modulus with-
out affecting the stress or strain distribution.

Further research is needed to decide if the locked-in birefrigence would indeed be
influenced by the varying of the material property ratio. It is conceivable that the locked-
in portion of the birefringent response is associated only with the rubber phase of the
material. Conceivably the birefringence produced in the transition zone is composed of

5
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two parts, one part associated with the rubbery state of the material and looked in and
the nther nan assnciaterd with the claccr ctat- and not lonker n.

The stress distribution of the components of axisymmetric and radially symmetric
composites is known not to change due to variation of material properties. The proportion
of load carried may change but not the distribution of stress within each component. So
this class of problems also gives valid photoelastic results. The particular result represents
the integral ratio of the material properties.

THREE-DIMENSIONAL ANALYSIS

Thermal Shrinkage

In principle one could heat a three-dimensional photoelastic model to the upper crit-
ical temperature, bond it or restrain it in some other manner at that temperature, and then
cool it to obtain the shrinkage strain and stress due to the particular restraint applied.
However it is quite inconvenient and sometimes impossible to apply restraints to a model
in the heated state. It is found however that models restrained at room temperature,
hea.t.Prl ton ahonti. the iinnor nritiral ftemnPrnfiare and slowiv rnnled, lock in n nhntnelaqtic
pattern of the same distribution and sign as (but much smaller magnitude than) that of
the same model restrained at the high temperature and cooled. One could argue that since
the thermal expansion and contraction of a material are about the same, and since the
locking-in occurs on the return, or downside, of the thermal cycle, the response should be
due primarily to the expansion, reduced somewhat by the contraction. That this does not
occur indicates that as the model is heated, the strains due to restrained expansion are
relaxed in the soft state to the point that, on cooling, the contraction overcomes the re-
maining expansion and puts the body in restrained contraction which is locked in before
fhe lonwr rirtical tamunorntan- ic reAnhnd

A significant point here is that the total expansion and contraction are the same but
with different signs. Linear material behavior requires that the part of the load that does
not relax and remains as the heating cycle reaches the maximum temperature produces a
birefringent response proportional to the field of birefrigence that would have been pro-
duced if there were no relaxation. At some stage of cooling, contraction reduces these
stresses and strains to zero throughout the field. The continued restrained contraction then
produces stresses and strains of the opposite sign which increase with the continued cooling,
Rome nart of fheRe stresses and Strains are lnrke in Sinree the lnketd in effect is the inte-
gral response over a span of time, the response can be thought of as the sum of a series of
responses which differ in magnitude, but which all have the same spacial proportions;
therefore the locked-in part is also proportional to the total stress and strain response,

Curing Shrinkage

Typically strains occur due to curing shrinkage when a material is cast in a mold, bonds
(nr Alinrc' tn the mnnlt end iQ rpRfraitn- i fnrdnm the chrinkeaes- nf s-'nrinscr flnlina Urhirh
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occurs during curing has its own thermal contraction, which is usually considered part of
the curing shrinknag In rnket. ogrins, nhntonel:st.ie modls_ and many composites the
material is liquid and hot when cast in the mold. The liquid may be further heated or
cooled, but not until it forms a gel will shrinkage be significant in the sense used above.
Once it gels and adheres to the mold, or clings to core components of the mold, there is
the possibility of shrinkage, restraint of shrinkage, and strain. Observations indicate that
little photoelastic response occurs in the gel state and that often the photoelastic model
can be cured completely without significant photoelastic response.

Sampson in a careful study [9] of shrinkage stresses viewed the photoelastic response
of a material from casting to the final state at ambient temperature with restraints removed.
After the material gelled, the rate of heating was controlled to balance the curing shrinkage
with thermal expansion, so that the material was cured with little or no photoelastic re-
sponse. Only on cooling to ambient temperature was appreciable photoelastic response
seen. It was further observed that in a nonuniform strain field due to restrained shrinkage
(a disk bonded at opposite ends of its vertical diameter) the distribution of photoelastic
fringes did not change with temperature.

The study also noted that on removal of restraint there was an immediate reduction
in the fringe order of 40% followed during the subsequent month by about a 16% reduc-
tion. The fringe response as a function of temperature for a restrained tensile specimen
following Sampson is shown in Fig. 3. Similar curves were obtained for fringes in a non-
homogenous strain field.
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Fig. 3 - The photoelastic fringe response of a uniaxial tensile specimen
cast and cured with the ends bonded to a rigid frame (after
Sampson (`9])
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It has been shown [10] that a partially cured epoxy model loaded mechanically also
responds in a manner proportional to the elastic response. Both Sampson's and Durelli's
work support the hypothesis that throughout the curing and cooling cycle, above, through,
and below the transition zone, the photoelastic response can always act in an elastic or
linear viscoelastic manner and portions of the response can be superposed to give an inte-
gral elastic-viscoelastic response that is proportional to the elastic distribution and can be
>CalA in1J ±re±tesI C=lL JsLaoue e ts vio Jp'±asUi. solu*J VY lid! Aj T.kfliLUr sWLIJLJ

the usual limitations of elastic theory.

Checks and Calibration

Rather than test this hypothesis on a given material by a continuous study of the
photoelastic response of a material through all phases of its loading, as was done by
Sampson, Durelli in all cases of shrinkage stress analysis simultaneously applied the same
ImA nycle fntrincr tVheimnl InAdclina nr hnfhl +o fi-- enoinman +A ho imnn17Cr,'or fn t
model with a known stress distribution. The model with the known solution served both
as a calibration device and as a check on the method. The check was primarily to assure
that there were no thermal or curing gradients and that the material was elastic or linearly
viscoelastic throughout the loading cycle.

These calibration models were rings and cylinders subjected to uniform internal or
external restraint (Lame's solution), tensile bars bonded at both ends to rigid frames, ta-
pered tensile bars, two-dimensional star shapes for which response had been obtained by
antuial thrnmmil qshrinlIakn nf riihhor mnrillc al mnrocla .vi+tkh orunfillo nIinmtmorionl cnlitinnct

(as the meridian plane of a hollow cylinder bonded on its outer diameter and shrunk). The
method has been verified many times over by this approach. The verification came in
comparing the distribution of the photoelastic response of the calibration model with the
predicted response from the known solution. Subsequently the known solution was used
to relate the fringe response in the calibration model to the shrinkage a and Young's
modulus E. It was thus possible to obtain stress and strain concentration factors without
determining actual values of a, E•, or the material fringe value S.

The stress a and straint e are usually reported in the nondimensiona1 terms ulU nnr

e/a. The shrinkage symbol a, as used here, is defined as the total shrinkage due to either
curing or thermal change that would occur in the material if it were not restrained. If
the body is made of two materials, a is taken as the difference in shrinkage between the
two materials. The value of shrinkage a is a nondimensional number similar to strain.

Although the photoelastic pattern represents the restrained shrinkage strain, it is not
produced by the total shrinkage. That fraction of the load at the beginning of the locking-
in process that creeps out before it can be locked in and that fraction of the load produced
Taflt3 -hA en P 4-he I,- nb,-, pro-ess that is notI -locke i before ae n-nne.a bean e
*Itefl L...- -_~t -J u4±~ ItJVf±1AI1CSX,00t±U la IXtJU IWfl.,XtA MII L~A%4UIV L~4Ztatm& tAJ&

elastic do not contribute to the frozen-in photoelastic response. So only a fraction of the
load is locked in, but it is a proportional fraction and therefore a representative fraction.
This integrated response tends to mitigate the usefulness of constants such as a, E, and 4c
computed from the frozen-in response, since they would only represent the relations of
fractions of the stress, strain, and photoelastic response accumulated over a part of the
loading cycle.
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SHRINKAGE IN COMPOSITES

The solid-propellent-rocket grain is essentially a two-material, two-part composite.
Nearly all the techniques developed for the study of shrinkage stresses in rocket grains can
be applied directly to the microscopic analysis of composite materials. By microscopic
analysis is meant the study of the composite as a body composed of several materials, each
of which is treated as an isotropic, homogeneous material. In many composites there are
two materials: the fibers or inclusions and the surrounding matrix.

An alternative approach in the study of composites is to treat the composites as a
single anisotropic homogeneous material. In this case the stresses and strains are the aver-
age value over a region large enough to encompass many elemental inclusions. Because of
this restriction to a comparatively large region, the approach is called macroscopic. In
macroscopic analysis there can be no shrinkage stresses or strains of the type discussed
here due to uniform shrinkage. Only thermal or curing gradients would produce shrinkage
stresses and strains, and this would be a different analysis than considered here.

A number of composite bodies subjected to both shrinkage and mechanical loads have
been analyzed [11-15]. Figure 4 shows the photoelastic response in a transverse section
of three long parallel rods in a shrunk matrix.

SLICE

3/4 WA6

Fig. 4 - Isochrornatics in
a transverse cross section
of a matrix shrunk about

/ , _ _ _ three inserts
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TWO-DIMENSIONAL ANALYSIS

The methods used in three-dimensional analysis are sometimes applied in the same
way to two-dimensional modeling of shrinkage stresses. Often however two-dimensional
studies treat live photoelastic response, as opposed to the three-dimensional locked-in re-
sponse. As with three-dimensional studies either curing or thermal shrinkage can be ap-
plied, but it is unnecessary to lock in or freeze the photoelastic response. Three-dimensional
photoelastic studies currently use expoxy material almost exclusively. Two-dimensional
studies use epoxies, other hard plastics, and transparent rubbers (primarily polyurethane).

Thermal loading is straightforward. The prototype is modeled geometrically, the
model is either heated or cooled, and the response recorded (usually by photography).
Thermal gradients must be avoided, and if the temperature takes the material into the
viscoelastic zone, the cautions mentioned in the Special Requirements section must be
exercised. For epoxy materials the viscoelastic zone is above room temperature. For
polyurethane the viscoelastic zone is below room temperature.

Curing loading with epoxy is no different in two-dimensional models than in three-
dimensional models except that it is not necessary to remove the restraints. If a polyure-
thane rubber is used as the shrinkage material in curing. then the method has one addi-
tional distinction: the rubber cures completely in the rubbery state. Whatever strains are
produced due to restraint are elastic. The strains and the associated photoelastic response
will vanish immediately and completely if the restraints are removed. This disappearance
of response coupled with the fact that the unloaded body has a shape smaller than but
geometrically similar to the mold verifies that the response produced in curing is equiva-
lent to the thermal response. Many solutions using cured rubber models [16-231 are re-
ported. Figure 5 is an illustration of a rubber model shrunk on rigid inserts comparable
to the three-dimensional model in Fig. 4. The isoclinics are included in the pattern.

Slot [24J reports an ingenious photoelastic method to analyze certain shrinkage
problems. A mechanical load is applied to an epoxy material and the material is heated
to the critical temperature in the usual way and cooled to lock in a strain field. A model
is cut from the prestrained epoxy material in the shape of the shrinking portion of the
body to be analyzed. This piece is cemented to a second model of the portion of the
body which produces the restraint. When the combined body is reheated, the prestrained
body relaxes and sets up stress and strain fields. The method is primarily for two-
dimensional analysis. Two-dimensional methods can also be applied to failure studies [25}.

A unique difficulty arises in two-dimensional so-called plane-stress analysis of com-
posites subjected to shrinkage (or to mechanical loads), since at the microscopic level there
is no plane-stress condition in composites. Trivial cases that can be ruled out are compos-
ites composed of materials with identical properties (these can be treated as single-material
bodies) and composites loaded such that the loads on the individual materials are self-
equilibriating and produce no stress on material interfaces (these can be divided into sep-
arate single-material problems). What remains as a difficulty are composites with an inter-
face that transmits stresses and across which there is a discontinuity of mechanical proper-
ties. say Young's modulus E. Poisson's ratio v. and the shrinkage coefficient a The normal
stress and shear stress on the interface are continuous, as are the direct strains and shear

10
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strains tangential to the interface. However the normal stresses tangential to the interface
can be discontinuous across the interface and be one value in one material and another in
the other material.

Fig. 5 - Isoclinics (0 = 300) and isochromatics around three rigid
inserts in a plate subjected to restrained shrinkage

Consider a flat composite plate having a uniform thickness that is small compared to
its other dimensions. The parallel surfaces are without load; the plate is loaded in the
plane of the plate by loads at its periphery. It will be assumed that interfaces between the
materials must have their normals in the plane of the plate. On the interface, tangential
stresses perpendicular to the free surfaces will depend on the in-plane stresses and the ma-
terial properties of the two materials but will not tend to zero as the thickness tends to
zero. For example, for a nonrigid material bonded to a rigid material the out-of-plane
tangential stress in the nonrigid material ot is related to the in-plane stress perpendicular
to the interface on by the formula

at = fin

regardless of the plate thickness. Thus reducing the thickness of a composite plate does
not insure that the out-of-plane stresses approach zero. Figure 6 is an illustration of the

11
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strains set up on a straight boundary at a line of symmetry for an incompressible material
bonded to a rigid material and shrunk an amount a.

PLANE SROrkntwC- wirtitESS POTOELASTtC
OF PHOTOELASTIC MODEL PLANE OF VIEW

Z / | ~~~~~~~LiKt OF SYMME R

fib /1/ /'r Cy-_ 20 T4Ut k

4oo ___1_2 . eX. M j THICKNESS

RIGIC FRAME ~~~~RIGID FRAME
OOTTSE LINES SUGGEST ISOSTAliCS TO SHOW

THAT PRINCIPAL sEcrioNs CHANGE THROUGHOUT

THICKNESS, BUT DO NOT AFFECT Cz -, -f -- ZA

Fig. 6 - Plane views showing that at the intersection of a lne of symmetry and a
boundary of an incompressihle maferial hn"ndlat f- a rigi mnmihar and shrnni an

amount a, the photoelastically measurable stress zmaX will be 3S

The discontinuity at the interface is essentially a loading condition that creates out-
of-plane stress irrespective of thickness. This out-of-plane load is called pinching [231.
An example of pinched and unpinched models is shown in Fig. 7. Some have argued that
away from the interface the plane-stress condition prevails, but this ignores the fact that
it is the interface condition which makes the composite a distinct problem, In experimen-
tal work this means one cannot assume the out-of-plane stresses are zero. Photoelastic
response over the interface has to be looked on as an average rather than as unuiform
through the thickness.

Theoretical solutions which begin by stating that the out-of-plane stress is zero and
then specify two-dimensional boundary conditions on the interface continue to be pub-
lished. It is not clear what physical significance they can have. Often they accompany a
plane-strain analysis in which pinching is not involved. The extension of these plane-strain
solutions to "plane stress" is disturbing. Equally disturbing is the argument that since
there is plane stress away from the interface, and plane strain on the interface, the two-
dimensional solution is approximately correct everywhere.

12



NRL REPORT 7921

RrncheW model Non- pincned model

Fig. 7 - Isochromatic patterns of 1-by-2 rectangular plates bonded on the long
side and subjected to shrinkage

CURRENT STATE OF THE ART

in this section the photoelastic modeling of the uniform-shrinkage-stress problem will
be discussed in such a way as to indicate current available methods and see what limits are
imposed by the nature of the problem. Uniform shrinkage produces stress only if the body
has two or more materials with different material properties, and this is restricted to the
class of materials known as composites (such as fiberglass) and to multimaterial bodies,
such as the well known bimetallic strip used in thermometers. Any problem of stress anal-
ysis can be described in terms of three components: the geometry, the loading, and the
material. The limitations for each of these three components and how they overlap will
be discussed in the following subsections.

Geometric Limitations

Little limitation is put on geometry as such by shrinkage analysis. The geometric
relationship between the prototype and model is called the scale factor and simply requires
that every model dimension be the same fixed scale or proportion of the prototype. How
geometry influences loading and material is taken up in the following discussions.

Loading Limitations

Both model and prototype are assumed to be subjected to slow, uniform material
shrinkage, restrained the same in each case. The shrinkage need not have the same value

13
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in model and prototype. It is required only that both be small enough to avoid gross dis-
tortion (geometric nonlinearity) and both have strains below the material proportional
limit (material nonlinearity).

The uniformity of shrinkage is essential to the success of the three-dimensional stress-
freezing method. If the problem is one of nonuniform shrinkage, other methods are re-
quired.

The specification of loading depends to some extent on both the geometry and the
material. The loading is specified as slow, uniform shrinkage. For the shrinkage to be
uniform in the case of thermal change, it is necessary that the thermal gradient be negligi-
ble. DUepelnwlog orn the geometry, size, anu inerinal colucticvity of tihe buoy tLe therfmal
gradient can range from a temperature change of a few degrees an hour to fractions of a
degree per hour. Many large photoelastic castings take a month or more to heat and cool
to satisfy this requirement. The adjective slow is added because in some situations uniform
shrinkage could be obtained with a fairly fast cycle (say a thin plate with good thermal
conductivity), but if the material is viscoelastic, the minimum time is restricted by the
material's characteristic response time. Since more than one material is involved, it re-
quires full response of all materials to insure that there is no redistribution of load during
the cycle. This is a material requirement independent of geometry (size). It can be
characterized by the time it Lakes to produce a certain fraction of the Lotot response. Say
a material shows 2/3 of its response to a load in 5 seconds, or 99% in 20 minutes. A
measurement such as this can be used to estimate what can be considered slow.

Studies of photoelastic fringes show that in the transition zone the fringe response
becomes slow. But these studies combine the frozen and nonfrozen response. It becomes
difficult to decide for the complex locking-in-cooling,cycle what the contribution to the
integral effect will be. This phenomenon must be checked using a model with a known
solution.

Material Limitations

Simulating the prototype material in the model is probably the most difficult part in
setting up the experimental analysis of shrinkage stresses, and it puts the most severe lim-
its on the analysis. For the prototype and model, materials must be assumed to be iso-
tropic, homogeneous, and linear. The materials of the model and the prototype must be
linearly elastic or linearly viscoelastic throughout its loading history in the case of the
prototype and throughout the stress-freezing portion of the thermal cycle in the case of
the model.

The elastic moduli do not have to be the same in the model and the prototype, but
they do have to be in proportion. That is, the ratio of Young's moduli has to be the
same as the ratio of the corresponding moduli of the materials in the prototype. Thus, if
the prototype has materials with moduli in the ratio 1:3:5, the model must have the cor-
responding moduli in the ratio 1:3:5. Poisson's ratio should be the same for corresponding
materials of the model and the prototype.
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If the prototype materials are viscoelastic, the moduli change in time after loading,
and the model moduli must change proportionally. This is a severe limitation, but one
class of viscoelastic problems which circumvent (or in another sense satisfy) this limitation
are prototypes composed of a nonrigid linear viscoelastic material and a rigid material. Re-
gardless of variations of the modulus of the viscoelastic material of the prototype, the
ratio with the rigid material modulus is always zero; hence the viscoelastic material of the
model can have any modulus as long as it is linear and nonrigid with respect to the other,
rigid model material.

Another class of viscoelastic problems which satisfy this condition, in a rather simple
manner, was mentioned in the discussion of loading. This is the class of problems in which
the loading is slow enough to allow the viscoelastic materials to reach the equilibrium
modulus. It is then necessary only that the equilibrium moduli be proportional in the
model and the prototype.

Other classes of problems which partially circumvent the relaxation difficulty are two-
dimensional (plane-stress or plane-strain) problems with axisymmetry and three-dimensional
radially symmetric problems. The two-dimensional group are often referred to as Lamens
problem, and radially symmetric problems are the three-dimensional counterparts of Lame's
problem, In these problems, because of different rates of relaxation there can be a re-
distribution of load between the various materials, but each individual stress distribution
will remain proportional within each material.

Finally if the prototype material itself can be analyzed photoelastically, then there is
no modeling to consider. This is not uncommon, since many composite matrices are of
epoxy or other plastics. One such study was recently published [251; The material itself
must still be calibrated; that is, the birefringence must be related to stress or strain.

SUMMARY

It is felt that the photoelastic method has been developed into a viable method for
both two-dimensional and three-dimensional analysis of stresses due to restrained shrinkage.
Like any other method it has limitations, some of which have been discussed and which
have to be considered in each application.

Because of these limitations three-dimensional photoelasticity in general, and the
stress-freezing technique in particular, is primarily confined to the microanalysis of shrink-
age stresses in composite materials subjected to slow curing or slow thermal changes.

Two-dimensional photoelastic analysis of composites is hampered by an inherent
condition called pinching which seriously affects the analysis at the interfaces of the com-
posite material. Despite these limitations the method has been used to solve a number of
important problems and presumably will be used to solve more.
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